Sample Exam 1

Phy122 Electricity and Magnetism
Name: \qquad
July 82010
You have until 11:45 to complete this exam. You are allowed one index card for formulas and notes. You may have a calculator (but it probably won't help you) but no cell phones or other electronic devices are allowed. Please ask me if any questions come up during the test. I hope you do well!

1. Multiple Choice. [20 Points]

Circle the correct answers.
(a) A charge is inside a spherical balloon. As the balloon expands, what happens to the total flux going through the balloon?
i. The flux decreases
ii. The flux increases
iii. The flux remains the same
iv. It is impossible to tell from the information given.
(b) A point charge q is placed at the center of the cavity of a conducting shell of radius R . What is the field outside the shell, at a distance r?
i. 0
ii. $\mathrm{kq} / \mathrm{R}^{2}$
iii. $\mathrm{kq} / \mathrm{r}^{2}$
iv. $\mathrm{kq} /\left(4 \pi \mathrm{R}^{2}\right)$
(c) Two negative point charges are separated by a distance d . The electric field is strongest:
i. directly between the two charges
ii. everywhere along the line that separates the two charges (perpendicular to the line that connects them)
iii. along the line that connects the charges, but not in the region between them.
iv. just below either of the charges.
(d) Two charged bugs exert a force of 2 N on each other. What will be the force if they walk toward each other so that they are only one-quarter as far apart?
i. $1 / 8 \mathrm{~N}$
ii. $1 / 2 \mathrm{~N}$
iii. 8 N
iv. 32 N

2. Infinite Pancakes [30 points]

(a) Two infinite planes are placed on top of one another with a layer of air between them so that the are separated by a distance d. The bottom plane has charge per unit area of 2σ, while the top plane has charge per unit area of σ. Find the Electric field in the space between the two plates
(b) What is the potential difference between the plates?
(c) A charge Q is embedded in the bottom plate. What is the electric field above the two plates and directly above that charge?
3. A Fancy Ring [30 of points]

A thin ring of charge of radius R sits in the $\mathrm{x}-\mathrm{y}$ plane. One half of the ring is negatively charged with uniform density $-\lambda$, and the other half is positively charged with a uniform density $+\lambda$, as shown.
(a) Find the electric field in the center. [Hint: remember that a small arc length ds=rd θ]
(b) Find the electric potential at the center.

4. There will be an additional question on the exam [20 points]

